Effect of hydrogen passivation on charge storage in silicon quantum dots embedded in silicon nitride film

Abstract
The effect of hydrogen passivation on the charge storage characteristics of two types of silicon nitride films containing silicon quantum dots (Si QDs) grown by SiH4+N2 and SiH4+NH3 plasma was investigated. The transmission electron microscope analysis and the capacitance-voltage measurement showed that the silicon nitride film grown by SiH4+NH3 plasma has a lower interface trap density and a higher density of Si QDs compared to that grown by SiH4+N2 plasma. It was also found that the charge retention characteristics in the Si QDs were greatly enhanced in the samples grown by means of SiH4+NH3 plasma, due to the hydrogen passivation of the defects in the silicon nitride films by NH3 during the growth of the Si QDs.