A Lie-Backlund approach to equivalence and flatness of nonlinear systems

Abstract
A new system equivalence relation, using the framework of differential geometry of jets and prolongations of infinite order, is studied. In this setting, two systems are said to be equivalent if any variable of one system may be expressed as a function of the variables of the other system and of a finite number of their time derivatives. This is a Lie-Backlund isomorphism. The authors prove that, although the state dimension is not preserved, the number of input channels is kept fixed. They also prove that a Lie-Backlund isomorphism can be realized by an endogenous feedback. The differentially flat nonlinear systems introduced by the authors (1992) via differential algebraic techniques, are generalized and the new notion of orbitally flat systems is defined. They correspond to systems which are equivalent to a trivial one, with time preservation or not. The endogenous linearizing feedback is explicitly computed in the case of the VTOL aircraft to track given reference trajectories with stability.

This publication has 47 references indexed in Scilit: