Threonine Entry into Rat Brain After Diet‐Induced Changes in Plasma Amino Acids

Abstract
Passage of amino acids across the blood‐brain barrier is modified by the amino acid composition of the blood. Because blood amino acid concentrations respond to changes in protein intake, we have examined associations among diet, plasma amino acid patterns, and the rate of entry of threonine into the brain. Rats were adapted for 8 h/ day for 7–10 days to diets containing 6, 18, or 50% casein before receiving a single, independently varied, final meal of a diet containing 0, 6, 18, or 50% casein. After 4–7 h, they were anesthetized and infused intravenously with [14C]threonine for 5 min before plasma and brain samples were taken for determination of radioactivity and amino acid content. Plasma and brain threonine concentrations decreased as protein content increased in the diets to which the rats had been adapted. Plasma threonine concentrations increased twofold, from 1.6 to 3.0 mM, when rats adapted to 6% casein meals received a single 50% casein meal rather than a nonprotein meal; a fivefold increase, from 0.13 to 0.69 mM, occurred when rats had been previously adapted to 50% casein meals. Increasing the protein content of the final meal did not increase brain threonine concentrations. Highest and lowest rates of threonine entry into the brain occurred, respectively, in rats adapted to 6 and 50% casein meals. Changes in plasma threonine concentrations and threonine flux into brain reflected protein content of both pretreatment and final meals.