Split Dimensional Regularization for the Coulomb Gauge
Abstract
A new procedure for regularizing Feynman integrals in the noncovariant Coulomb gauge is proposed for Yang-Mills theory. The procedure is based on a variant of dimensional regularization, called split dimensional regularization, which leads to internally consistent, ambiguity-free integrals, some of which turn out to be nonlocal. It is demonstrated that split dimensional regularization yields a one-loop Yang-Mills self-energy that is nontransverse, but local. Despite the noncovariant nature of the Coulomb gauge, ghosts are necessary in order to satisfy the appropriate Ward/BRS identity. The computed Coulomb-gauge Feynman integrals are applicable to both Abelian and non-Abelian gauge models.Keywords
All Related Versions
This publication has 0 references indexed in Scilit: