Bragg reflection from cholesteric liquid crystals
- 1 February 1995
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review E
- Vol. 51 (2) , 1191-1198
- https://doi.org/10.1103/physreve.51.1191
Abstract
In this paper we discuss the optical reflective properties of single and multidomain cholesteric liquid crystals both experimentally and theoretically. The multidomain system has been prepared by dispersing a low concentration of polymer in a cholesteric liquid crystal. This results in a (passive) bistable colorful reflective display. Here we discuss the role of the polymer in altering the reflective properties in regard to their spectra and viewing characteristics. Theoretically we offer an application of the well known Berreman method [J. Opt. Soc. Am. 62, 502 (1972)] suitable for systems composed of an ensemble of uncorrelated domains, each of which is composed of the same dielectric anisotropy, however with its own local orientation. Using this technique the reflective properties of a cholesteric liquid crystal possessing a distribution in the orientation of the helix axes are simulated. We furthermore illustrate how a small fluctuation in the pitch from one domain to another significantly reduces any interference fringes. From these simulations we will show how experimentally by using a polymer network one may control the extent to which the orientation of the helix axes are distributed.This publication has 7 references indexed in Scilit:
- Cholesteric reflective display: Drive scheme and contrastApplied Physics Letters, 1994
- Liquid CrystalsPublished by Cambridge University Press (CUP) ,1992
- Elimination of the Fabry–Perot effect in the 4×4 matrix method for inhomogeneous uniaxial mediaJournal of Applied Physics, 1990
- Faster 4 × 4 matrix method for uniaxial inhomogeneous mediaJournal of the Optical Society of America A, 1988
- Light propagation and reflection by absorbing cholesteric layersThe Journal of Chemical Physics, 1981
- Electric Field Induced Texture Changes in Certain Nematic/Cholesteric Liquid Crystal MixturesMolecular Crystals and Liquid Crystals, 1973
- Optics in Stratified and Anisotropic Media: 4×4-Matrix FormulationJournal of the Optical Society of America, 1972