Experimental Results of Adaptive Periodic Disturbance Cancellation in a High Performance Magnetic Disk Drive

Abstract
This paper considers the implementation of an adaptive algorithm for periodic disturbance cancellation. It is shown that the maximum rate of adaptation can be calculated precisely based on measurements of the system’s frequency response. The response of the closed-loop system to additional disturbances can also be computed on that basis. The results are verified experimentally on a high track density magnetic disk drive. Excellent matching between the theoretical and experimental results is observed. An improved method is also proposed that leads to faster convergence of the adaptive algorithm and better disturbance rejection capabilities. The results of this paper significantly enhance the ability of the control engineer to design and analyze adaptive feedforward algorithms for a variety of applications where periodic disturbances are encountered.

This publication has 12 references indexed in Scilit: