Regulatory volume increase in mammalian jejunal villus cells is due to bumetanide-sensitive NaKCl2 cotransport
- 1 May 1990
- journal article
- research article
- Published by American Physiological Society in American Journal of Physiology-Gastrointestinal and Liver Physiology
- Vol. 258 (5) , G665-G674
- https://doi.org/10.1152/ajpgi.1990.258.5.g665
Abstract
We assessed ion transport mechanisms operative during regulatory volume increase (RVI) in villus enterocytes isolated in suspension from guinea pig jejunum and examined with electronic cell sizing and 86Rb influx. After validation of the electronic-sizing technique with direct measurements of cell water, the response of cell volume to hypertonic media was evaluated in detail. When shrunk by exposure to hyperosmotic media (455 mosmol/kg medium) cells demonstrated a RVI that was complete in 20 min. RVI required extracellular Na+, K+ and Cl-; this cell swelling showed the following ion sensitivity; Na+ > Li+ > choline, K+ = Rb+, and Cl- .gtoreq. Br- > NO3- = acetate = gluconate. Bumetanide inhibition of villus cell swelling was concentration dependent from 10-10 to 10-5 M (7.0 .+-. 4.5% vs. 87.8 .+-. 0.3%); furosemide (10-3 M) inhibited RVI (74.1 .+-. 9.5%), but amiloride (10-4 M) had little effect on cell swelling. Disulfonic stilbenes, 4-acetamido-4''-isothiocyanostilbene-2,2''-disulfonic acid and 4,4''-diisothiocyanostilbene-2,2''-disulfonic acid (10-4 M), generated the same inhibition of RVI in either nominally HCO3-free phosphate-buffered saline (PBS) or HCO3--buffered PBS, suggesting anion exchange was not involved. Ouabain (10-4 M) stimulated cell swelling. Hypertonic shrinkage increased the initial rate of bumetanide-sensitive 86Rb influx (80 .+-. 38 vs. 1,011 .+-. 241 pmol .cntdot. mg protein-1 min-1; P < 0.005) and required extracellular Na+ and Cl- (11 .+-. 16 vs. 28 .+-. 61 pmol .cntdot. mg protein-1 .cntdot. min-1). RVI was prevented in low-K+ media (0.2 mM), but the addition of KCl initiated cell swelling. Our data strongly suggest that RVI in jejunal villus enterocytes occurs because of the hypertonic activation of NaKCl2 cotransport.This publication has 24 references indexed in Scilit:
- ISOLATED INTESTINAL-MUCOSA CELLS OF HIGH VIABILITY FROM GUINEA-PIG1983
- Effect of ?high ceiling? diuretics on active salt transport in the cortical thick ascending limb of Henle's loop of rabbit kidneyPflügers Archiv - European Journal of Physiology, 1983
- Volume regulation by human lymphocytes: Characterization of the ionic basis for regulatory volume decreaseJournal of Cellular Physiology, 1982
- Catecholamine-stimulated ion transport in duck red cells. Gradient effects in electrically neutral [Na + K + 2Cl] Co-transport.The Journal of general physiology, 1982
- Furosemide-sensitive salt transport in the Madin-Darby canine kidney cell line. Evidence for the cotransport of Na+, K+, and Cl-.Journal of Biological Chemistry, 1982
- Volume regulation by Amphiuma red blood cells. The membrane potential and its implications regarding the nature of the ion-flux pathways.The Journal of general physiology, 1980
- Electrically silent cotransport of Na+, K+ and Cl− in ehrlich cellsBiochimica et Biophysica Acta (BBA) - Biomembranes, 1980
- cAMP-stimulated cation cotransport in avian erythrocytes: inhibition by "loop" diureticsAmerican Journal of Physiology-Cell Physiology, 1980
- The transport of chloride in ehrlich ascites tumor cellsJournal of Cellular Physiology, 1976
- Effects of 4-acetamido-4′-isothiocyano-2,2′-disulfonic stilbene on ion transport in turtle bladdersBiochimica et Biophysica Acta (BBA) - Biomembranes, 1976