Produkteigenschaften und Verfahrenstechnik
- 1 August 1991
- journal article
- research article
- Published by Wiley in Chemie Ingenieur Technik - CIT
- Vol. 63 (8) , 792-808
- https://doi.org/10.1002/cite.330630805
Abstract
Product properties and process engineering. The properties of solids are determined by their chemical composition, their state of dispersion, and their interfacial forces. They are largely responsible for the behaviour of the products during the manufacturing process and for the desired quality characteristics of the finished product. The aim of this survey is to illustrate the influence of particle size distribution and interfacial forces on product properties. The effects shown can be explained with the aid of a few physical modes. The first part shows how product properties can be adjusted to achieve a particular aim, principally by modifying the particle size. These include product‐relevant properties such as filtration properties, miscibility, and potential for dust explosion, as well properties relevant to the (final) product such as colour and taste. As the particle size decreases, the forces acting between the particle become increasingly important. The second part of this article therefore focuses on those product properties which can be influenced by way of changes in the cohesive forces. Production‐relevant properties are flow properties, bulk density, agglomeration behaviour; product‐relevant properties are tablet stability and redispersibility of foods, dyes, etc. Among the cohesive forces, capillary forces deserve particular attention. The paper concludes with an account of their role in the manufacture and use of solids. The pore structure of an agglomerated solid is determined by capillary forces and the external forces required during the manufacturing process.Keywords
This publication has 13 references indexed in Scilit:
- Types of gas fluidizationPublished by Elsevier ,2001
- Calmodulin, cell growth and gene expressionTrends in Neurosciences, 1989
- Interpretation of Geldart's type A, B, C and D powders by taking into account interparticle cohesion forcesPowder Technology, 1982
- Der Einfluß von Anpreßkräften auf die PartikelhaftungChemie Ingenieur Technik - CIT, 1976
- Kapillardruck und Zugfestigkeit von feuchten Haufwerken aus körnigen StoffenChemie Ingenieur Technik - CIT, 1973
- The tragedy of viral diagnosisPublished by Oxford University Press (OUP) ,1970
- Zur Theorie der Zugfestigkeit von Agglomeraten bei Kraftübertragung an KontaktpunktenChemie Ingenieur Technik - CIT, 1970
- AcknowledgementsActa Paediatrica, 1964
- The London—van der Waals attraction between spherical particlesPhysica, 1937
- The Dynamics of Capillary FlowPhysical Review B, 1921