193 NM LIGHT INDUCES SINGLE STRAND BREAKAGE OF DNA PREDOMINANTLY AT GUANINE

Abstract
Irradiation of DNA with 193 nm light results in monophotonic photoionization, with the formation of a base radical cation and a hydrated electron (φP1 = 0.048–0.065). Although >50% of the photoionization events initially occur at guanine in DNA, migration of the “hole” from the other bases to guanine occurs to yield predominantly its radical cation or its deprotonated form. From sequence analysis, the data reveal that 193 nm light induces single strand breaks (ssb) in double‐stranded DNA preferential 3’ to a guanine residue. However, it has previously been reported that 193 nm light yields very low yields of ssb (<2% of the yield of eaq). The distribution of these ssb at guanine is nonrandom, showing a dependence on the neighboring base moiety. The efficiency of ssb formation at nonguanine sites is estimated to be at least one order of magnitude lower. The preferred cleavage at guanine is consistent with migration and localization of the electron loss center at guanine. It is argued that singlet oxygen and the photoionized phosphate group of the sugar moiety are not major precursors to ssb. At present, the mechanisms of strand breakage are not known although a guanine radical or one of its products remain potential precursors.

This publication has 42 references indexed in Scilit: