Some properties of rank-2 lattice rules
- 1 January 1989
- journal article
- Published by American Mathematical Society (AMS) in Mathematics of Computation
- Vol. 53 (188) , 627-637
- https://doi.org/10.1090/s0025-5718-1989-0982369-6
Abstract
A rank-2 lattice rule is a quadrature rule for the (unit) s-dimensional hypercube, of the form \[ Q f = ( 1 / n 1 n 2 ) ∑ j 1 = 1 n 1 ∑ j 2 = 1 n 2 f ¯ ( j 1 z 1 / n 1 + j 2 z 2 / n 2 ) , Qf = (1/{n_1}{n_2})\sum \limits _{{j_1} = 1}^{{n_1}} {\sum \limits _{{j_2} = 1}^{{n_2}} {\bar f({j_1}{{\mathbf {z}}_1}/{n_1} + {j_2}{{\mathbf {z}}_2}/{n_2}),} } \] which cannot be re-expressed in an analogous form with a single sum. Here f ¯ \bar f is a periodic extension of f, and z 1 {{\mathbf {z}}_1} , z 2 {{\mathbf {z}}_2} are integer vectors. In this paper we discuss these rules in detail; in particular, we categorize a special subclass, whose leading one- and two-dimensional projections contain the maximum feasible number of abscissas. We show that rules of this subclass can be expressed uniquely in a simple tricycle form.
Keywords
This publication has 13 references indexed in Scilit:
- The Representation of Lattice Quadrature Rules as Multiple SumsMathematics of Computation, 1989
- Lattice Methods for Multiple Integration: Theory, Error Analysis and ExamplesSIAM Journal on Numerical Analysis, 1987
- Lattice methods for multiple integrationJournal of Computational and Applied Mathematics, 1985
- Parameters for Integrating Periodic Functions of Several VariablesMathematics of Computation, 1983
- Quasi-Monte Carlo methods and pseudo-random numbersBulletin of the American Mathematical Society, 1978
- Optimal Parameters for Multidimensional IntegrationSIAM Journal on Numerical Analysis, 1973
- Numerical Evaluation of Multiple IntegralsSIAM Review, 1970
- Molecular Schrödinger Equation. VIII. A New Method for the Evaluation of Multidimensional IntegralsThe Journal of Chemical Physics, 1967
- Good lattice points, discrepancy, and numerical integrationAnnali di Matematica Pura ed Applicata (1923 -), 1966
- Zur angenäherten Berechnung mehrfacher IntegraleMonatshefte für Mathematik, 1962