Abstract
In PET, usually the data are precorrected for accidental coincidence (AC) events by real-time subtraction of the delayed window coincidences. Randoms subtraction compensates in mean for AC events but destroys the Poisson statistics. Furthermore, for transmission tomography the weighted least-squares (WLS) method leads to systematic biases, especially at low count rates. We propose a new "shifted" Poisson (SP) model for precorrected PET data, which properly matches the first and second order moments of the measurement statistics. Using simulations and analytic approximations, we show that estimators based on the "ordinary" Poisson (OF) model for the precorrected data lead to higher standard deviations than the proposed method. Moreover, if one zero-thresholds the data before applying the maximization algorithm, the OP model results in systematic bias. It is shown that the proposed SP model leads to penalized-likelihood estimates free of systematic bias, even for zero-thresholded data. The proposed SP model does not increase the computation requirements compared to OP model and it is robust to errors in the estimates of the AC event rates.