Overexpression of lunatic fringe does not affect epithelial cell differentiation in the developing mouse lung
- 1 April 2005
- journal article
- research article
- Published by American Physiological Society in American Journal of Physiology-Lung Cellular and Molecular Physiology
- Vol. 288 (4) , L672-L682
- https://doi.org/10.1152/ajplung.00247.2004
Abstract
The Notch/Notch-ligand pathway regulates cell fate decisions and patterning in various tissues. Several of its components are expressed in the developing lung, suggesting that this pathway is important for airway cellular patterning. Fringe proteins, which modulate Notch signaling, are crucial for defining morphogenic borders in several organs. Their role in controlling cellular differentiation along anterior-posterior axis of the airways is unknown. Herein, we report the temporal-spatial expression patterns of Lunatic fringe (Lfng) and Notch-regulated basic helix-loop-helix factors, Hes1 and Mash-1, during murine lung development. Lfng was only expressed during early development in epithelial cells lining the larger airways. Those epithelial cells also expressed Hes1, but at later gestation Hes1 expression was confined to epithelium lining the terminal bronchioles. Mash-1 displayed a very characteristic expression pattern. It followed neural crest migration in the early lung, whereas at later stages Mash-1 was expressed in lung neuroendocrine cells. To clarify whether Lfng influences airway cell differentiation, Lfng was overexpressed in distal epithelial cells of the developing mouse lung. Overexpression of Lfng did not affect spatial or temporal expression of Hes1 and Mash-1. Neuroendocrine CGRP and protein gene product 9.5 expression was not altered by Lfng overexpression. Expression of proximal ciliated (β-tubulin IV), nonciliated ( CCSP), and distal epithelial cell ( SP-C, T1α) markers also was not influenced by Lfng excess. Overexpression of Lfng had no effect on mesenchymal cell marker (α-sma, vWF, PECAM-1) expression. Collectively, the data suggest that Lunatic fringe does not play a significant role in determining cell fate in fetal airway epithelium.Keywords
This publication has 52 references indexed in Scilit:
- Functional diversity ofnotchfamily genes in fetal lung developmentAmerican Journal of Physiology-Lung Cellular and Molecular Physiology, 2004
- Constitutive activation of Notch3 inhibits terminal epithelial differentiation in lungs of transgenic miceOncogene, 2003
- T1α, a lung type I cell differentiation gene, is required for normal lung cell proliferation and alveolus formation at birthDevelopmental Biology, 2003
- Notch signaling in kidney developmentCurrent Opinion in Nephrology and Hypertension, 2003
- Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT MethodMethods, 2001
- Spatial and temporal distribution of nerves, ganglia, and smooth muscle during the early pseudoglandular stage of fetal mouse lung developmentDevelopmental Dynamics, 2001
- Notch Signaling: Cell Fate Control and Signal Integration in DevelopmentScience, 1999
- Ontogeny of neuroepithelial bodies: Correlations with mitogenesis and innervationMicroscopy Research and Technique, 1997
- Signalling downstream of activated mammalian NotchNature, 1995
- Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures.Journal of Histochemistry & Cytochemistry, 1981