Anion vacancies as a source of persistent photoconductivity in II-VI and chalcopyrite semiconductors
Top Cited Papers
- 18 July 2005
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review B
- Vol. 72 (3) , 035215
- https://doi.org/10.1103/physrevb.72.035215
Abstract
Using first-principles electronic structure calculations we identify the anion vacancies in II-VI and chalcopyrite semiconductors as a class of intrinsic defects that can exhibit metastable behavior. Specifically, we predict persistent electron photoconductivity (-type PPC) caused by the oxygen vacancy in -ZnO, originating from a metastable shallow donor state of . In contrast, we predict persistent hole photoconductivity (-type PPC) caused by the Se vacancy in and . We find that in the chalcopyrite materials is amphoteric having two “negative-”-like transitions, i.e., a double-donor transition close to the valence band and a double-acceptor transition closer to the conduction band. We introduce a classification scheme that distinguishes two types of defects: type , which have a defect-localized-state (DLS) in the band gap, and type , which have a resonant DLS within the host bands (e.g., the conduction band for donors). In the latter case, the introduced carriers (e.g., electrons) relax to the band edge where they can occupy a perturbed-host state. Type is nonconducting, whereas type is conducting. We identify the neutral anion vacancy as type and the doubly positively charged vacancy as type . We suggest that illumination changes the charge state of the anion vacancy and leads to a crossover between - and -type behavior, resulting in metastability and PPC. In , the metastable behavior of is carried over to the complex, which we identify as the physical origin of PPC observed experimentally. We explain previous puzzling experimental results in ZnO and in the light of this model.
Keywords
All Related Versions
This publication has 74 references indexed in Scilit:
- Halogen n-type doping of chalcopyrite semiconductorsApplied Physics Letters, 2005
- Energetics of native defects in ZnOJournal of Applied Physics, 2001
- First-principles study of native point defects in ZnOPhysical Review B, 2000
- From ultrasoft pseudopotentials to the projector augmented-wave methodPhysical Review B, 1999
- Projector augmented-wave methodPhysical Review B, 1994
- Improved tetrahedron method for Brillouin-zone integrationsPhysical Review B, 1994
- Spectroscopy of shallow centers in semiconductors: Progress since 1960Physica B+C, 1987
- Self-interaction correction to density-functional approximations for many-electron systemsPhysical Review B, 1981
- Ground State of the Electron Gas by a Stochastic MethodPhysical Review Letters, 1980
- Trapping characteristics and a donor-complex () model for the persistent-photoconductivity trapping center in Te-dopedPhysical Review B, 1979