Abstract
1H and (113)Cd NMR studies are used to investigate the Cd(2+) binding sites on serum albumin (67 kDa) in competition with other metal ions. A wide range of mammalian serum albumins possess two similar strong Cd(2+) binding sites (site A 113-124 ppm; site B 24-28 ppm). The two strong sites are shown not to involve the free thiol at Cys34. Ca(2+) influences the binding of Cd(2+) to isolated human albumin, and similar effects due to endogenous Ca(2+) are observed for intact human blood serum. (1)H NMR studies show that the same two His residues of human serum albumin are perturbed by Zn(2+) and Cd(2+) binding alike. Zn(2+) displaces Cd(2+) from site A which leads to Cd(2+) occupation of a third site (C, 45 ppm). The N-terminus of HSA is not the locus of the two strong Cd(2+) binding sites, in contrast to Cu(2+) and Ni(2+). After saturation of the N-terminal binding site, Cu(2+) or Ni(2+) also displaces Cd(2+) from site A to site C. The effect of pH on Cd(2+) binding is described. A common Cd(2+)/Zn(2+) binding site (site A) involving interdomain His residues is discussed.