Identification of Higher-Order Electronic Coherences in Semiconductors by their Signature in Four-Wave-Mixing Signals

Abstract
Four-wave-mixing signals from excitons under linear-circular polarized excitation exhibit an elliptical polarization, depending on both the pulse delay and the spectral position. Besides the resonances corresponding to excitons and exciton-biexciton transitions, a breakup of the exciton line is found reflecting the influence of correlations on the four-point level. An analysis accounting for the exciton density, the bound biexciton, and the exciton-exciton scattering continuum reveals that these features are not due to an antibound two-exciton state. Instead, they result from an interference of the correlated exciton continuum with the exciton density. In addition, the modeling shows that the signals ellipticity is highly sensitive to the influences of different correlations and, therefore, allows for a discrimination of their contributions.