On weakly nonlinear modulation of waves on deep water

Abstract
We propose a new approach for modeling weakly nonlinear waves, based on enhancing truncated amplitude equations with exact linear dispersion. Our example is based on the nonlinear Schrödinger (NLS) equation for deep-water waves. The enhanced NLS equation reproduces exactly the conditions for nonlinear four-wave resonance (the “figure 8” of Phillips) even for bandwidths greater than unity. Sideband instability for uniform Stokes waves is limited to finite bandwidths only, and agrees well with exact results of McLean; therefore, sideband instability cannot produce energy leakage to high-wave-number modes for the enhanced equation, as reported previously for the NLS equation. The new equation is extractable from the Zakharov integral equation, and can be regarded as an intermediate between the latter and the NLS equation. Being solvable numerically at no additional cost in comparison with the NLS equation, the new model is physically and numerically attractive for investigation of wave evolution.