Asymptotic behavior of solutions to the coagulation-fragmentation equations. II. Weak fragmentation
- 1 October 1994
- journal article
- Published by Springer Nature in Journal of Statistical Physics
- Vol. 77 (1-2) , 89-123
- https://doi.org/10.1007/bf02186834
Abstract
No abstract availableKeywords
This publication has 7 references indexed in Scilit:
- Instantaneous gelation in coagulation dynamicsZeitschrift für angewandte Mathematik und Physik, 1992
- The mass-conserving solutions of Smoluchowski's coagulation equation: The general bilinear kernelZeitschrift für angewandte Mathematik und Physik, 1992
- Asymptotic behaviour of solutions to the coagulation–fragmentation equations. I. The strong fragmentation caseProceedings of the Royal Society of Edinburgh: Section A Mathematics, 1992
- The discrete coagulation-fragmentation equations: Existence, uniqueness, and density conservationJournal of Statistical Physics, 1990
- Trend to equilibrium in the Becker-Doring cluster equationsNonlinearity, 1989
- Asymptotic behaviour of solutions to the Becker-Döring equations for arbitrary initial dataProceedings of the Royal Society of Edinburgh: Section A Mathematics, 1988
- The Becker-Döring cluster equations: Basic properties and asymptotic behaviour of solutionsCommunications in Mathematical Physics, 1986