Photoactivatable mCherry for high-resolution two-color fluorescence microscopy

Abstract
Improved photoactivatable red fluorescent proteins are generated by including properties desirable for photoactivated localization microscopy (PALM) as selection criteria. The PAmCherry proteins are superior tags for one- and two-color PALM in fixed cells, among other applications. Also in this issue, McKinney et al. present an improved version of the green-to-red EosFP protein. The reliance of modern microscopy techniques on photoactivatable fluorescent proteins prompted development of mCherry variants that are initially dark but become red fluorescent after violet-light irradiation. Using ensemble and single-molecule characteristics as selection criteria, we developed PAmCherry1 with excitation/emission maxima at 564/595 nm. Compared to other monomeric red photoactivatable proteins, it has faster maturation, better pH stability, faster photoactivation, higher photoactivation contrast and better photostability. Lack of green fluorescence and single-molecule behavior make monomeric PAmCherry1 a preferred tag for two-color diffraction-limited photoactivation imaging and for super-resolution techniques such as one- and two-color photoactivated localization microscopy (PALM). We performed PALM imaging using PAmCherry1-tagged transferrin receptor expressed alone or with photoactivatable GFP–tagged clathrin light chain. Pair correlation and cluster analyses of the resulting PALM images identified ≤200 nm clusters of transferrin receptor and clathrin light chain at ≤25 nm resolution and confirmed the utility of PAmCherry1 as an intracellular probe.