Inbreeding coefficients and coalescence times
- 1 October 1991
- journal article
- research article
- Published by Hindawi Limited in Genetics Research
- Vol. 58 (2) , 167-175
- https://doi.org/10.1017/s0016672300029827
Abstract
This paper describes the relationship between probabilities of identity by descent and the distribution of coalescence times. By using the relationship between coalescence times and identity probabilities, it is possible to extend existing results for inbreeding coefficients in regular systems of mating to find the distribution of coalescence times and the mean coalescence times. It is also possible to express Sewall Wright's FST as the ratio of average coalescence times of different pairs of genes. That simplifies the analysis of models of subdivided populations because the average coalescence time can be found by computing separately the time it takes for two genes to enter a single subpopulation and time it takes for two genes in the same subpopulation to coalesce. The first time depends only on the migration matrix and the second time depends only on the total number of individuals in the population. This approach is used to find FST in the finite island model and in one- and two-dimensional stepping-stone models. It is also used to find the rate of approach of FST to its equilibrium value. These results are discussed in terms of different measures of genetic distance. It is proposed that, for the purposes of describing the amount of gene flow among local populations, the effective migration rate between pairs of local populations, M^, which is the migration rate that would be estimated for those two populations if they were actually in an island model, provides a simple and useful measure of genetic similarity that can be defined for either allozyme or DNA sequence data.Keywords
This publication has 23 references indexed in Scilit:
- A multi-dimensional coalescent process applied to multi-allelic selection models and migration modelsTheoretical Population Biology, 1991
- A Comparison of Three Indirect Methods for Estimating Average Levels of Gene FlowEvolution, 1989
- The coalescent in two partially isolated diffusion populationsGenetics Research, 1988
- Line-of-descent and genealogical processes, and their applications in population genetics modelsTheoretical Population Biology, 1984
- Analysis of Gene Diversity in Subdivided PopulationsProceedings of the National Academy of Sciences, 1973
- Analysis of population structure: II. Two‐dimensional stepping sone models of finite length and other geographically structured populations*Annals of Human Genetics, 1971
- Effective number of alleles in a subdivided populationTheoretical Population Biology, 1970
- On the rate of decrease of heterozygosity in circular stepping stone models of populationsTheoretical Population Biology, 1970
- THE GENETICAL STRUCTURE OF POPULATIONSAnnals of Eugenics, 1949
- The Evolution of DominanceThe American Naturalist, 1929