Enterovirus 71 Protease 2Apro Targets MAVS to Inhibit Anti-Viral Type I Interferon Responses
Top Cited Papers
Open Access
- 21 March 2013
- journal article
- research article
- Published by Public Library of Science (PLoS) in PLoS Pathogens
- Vol. 9 (3) , e1003231
- https://doi.org/10.1371/journal.ppat.1003231
Abstract
Enterovirus 71 (EV71) is the major causative pathogen of hand, foot, and mouth disease (HFMD). Its pathogenicity is not fully understood, but innate immune evasion is likely a key factor. Strategies to circumvent the initiation and effector phases of anti-viral innate immunity are well known; less well known is whether EV71 evades the signal transduction phase regulated by a sophisticated interplay of cellular and viral proteins. Here, we show that EV71 inhibits anti-viral type I interferon (IFN) responses by targeting the mitochondrial anti-viral signaling (MAVS) protein—a unique adaptor molecule activated upon retinoic acid induced gene-I (RIG-I) and melanoma differentiation associated gene (MDA-5) viral recognition receptor signaling—upstream of type I interferon production. MAVS was cleaved and released from mitochondria during EV71 infection. An in vitro cleavage assay demonstrated that the viral 2A protease (2Apro), but not the mutant 2Apro (2Apro-110) containing an inactivated catalytic site, cleaved MAVS. The Protease-Glo assay revealed that MAVS was cleaved at 3 residues between the proline-rich and transmembrane domains, and the resulting fragmentation effectively inactivated downstream signaling. In addition to MAVS cleavage, we found that EV71 infection also induced morphologic and functional changes to the mitochondria. The EV71 structural protein VP1 was detected on purified mitochondria, suggesting not only a novel role for mitochondria in the EV71 replication cycle but also an explanation of how EV71-derived 2Apro could approach MAVS. Taken together, our findings reveal a novel strategy employed by EV71 to escape host anti-viral innate immunity that complements the known EV71-mediated immune-evasion mechanisms. Enterovirus 71 (EV71) is the causative pathogen of hand, foot, and mouth disease (HFMD). Since the 2008 outbreak of HFMD in Fuyang, Anhui province, China, HFMD has been a severe public health concern affecting children. The major obstacle hindering HFMD prevention and control efforts is the lack of targeted anti-viral treatments and preventive vaccines due to the poorly understood pathogenic mechanisms underlying EV71. Viral evasion of host innate immunity is thought to be a key factor in viral pathogenicity, and many viruses have evolved diverse antagonistic mechanisms during virus-host co-evolution. Here, we show that EV71 has evolved an effective mechanism to inhibit the signal transduction pathway leading to the production of type I interferon, which plays a central role in anti-viral innate immunity. This inhibition is carried out by an EV71-encoded 2A protease (2Apro) that cleaves MAVS—an adaptor molecule critical in the signaling pathway activated by the viral recognition receptors RIG-I and MDA-5—to escape host innate immunity. These findings provide new insights to understand EV71 pathogenesis.Keywords
This publication has 75 references indexed in Scilit:
- Reconstitution of the RIG-I Pathway Reveals a Signaling Role of Unanchored Polyubiquitin Chains in Innate ImmunityCell, 2010
- Mitochondrial dynamics regulate the RIG‐I‐like receptor antiviral pathwayEMBO Reports, 2009
- Key Role of Ubc5 and Lysine-63 Polyubiquitination in Viral Activation of IRF3Published by Elsevier ,2009
- Isolation of mitochondria-associated membranes and mitochondria from animal tissues and cellsNature Protocols, 2009
- RIG-I is cleaved during picornavirus infectionVirology, 2009
- Viral and therapeutic control of IFN-β promoter stimulator 1 during hepatitis C virus infectionProceedings of the National Academy of Sciences, 2006
- Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virusNature, 2005
- VISA Is an Adapter Protein Required for Virus-Triggered IFN-β SignalingMolecular Cell, 2005
- Identification and Characterization of MAVS, a Mitochondrial Antiviral Signaling Protein that Activates NF-κB and IRF3Cell, 2005
- IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon inductionNature Immunology, 2005