Neutron-scattering study of the spin-state transition and magnetic correlations in La1xSrxCoO3 (x=0 and 0.08)

Abstract
LaCoO3 exhibits two magnetic-electronic transitions, one near 90 K and a second near 500 K. A previous study of the paramagnetic scattering using polarized neutrons demonstrated that the low-temperature transition is associated with the thermal excitation of Co3+ ions from the low-spin to the high-spin state. In the present work, we extend the paramagnetic-scattering measurements up to a temperature of 700 K. We find that the magnetic-scattering intensity decreases monotonically for temperatures above 300 K, indicating that the high-temperature transition is not dominantly magnetic in origin. Furthermore, the anomalous thermal expansion associated with the low-temperature transition is measured and shown to be consistent with a simple theoretical model for the spin-state transition. For comparison, paramagnetic-scattering measurements for La0.92 Sr0.08 CoO3 are also presented. In this material the ferromagnetic correlations are substantially stronger than in the undoped compound, and no transition to the low-spin state is observed. Instead, the paramagnetic scattering increases steadily with decreasing temperature until saturating below 24 K, the same temperature at which the magnetization of the zero-field-cooled specimen shows a sharp cusp. These results suggest that the magnetic moments in the doped compound freeze into a spin-glass state at low temperature.