Theophylline attenuates Ca2+ sensitivity and modulates BK channels in porcine tracheal smooth muscle

Abstract
Theophylline, a nonselective phosphodiesterase inhibitor, has long been regarded as a major bronchodilator in the treatment of human asthma. Using front-surface fluorometry with fura-2 and alpha-toxin permeabilization, the effects of theophylline on intracellular Ca2+ concentration ([Ca2+]i), tension development and Ca2+ sensitivity of the contractile apparatus were investigated in porcine tracheal smooth muscle strips. Application of theophylline induced a relaxation without a significant decrease in [Ca2+]i when strips were precontracted by 40 mm K+ depolarization, while theophylline significantly decreased both [Ca2+]i and tension induced by carbachol. The effects of theophylline on the increases in [Ca2+]i and tension induced by carbachol were significantly inhibited by iberiotoxin, an inhibitor of large-conductance Ca2+-activated K+ channels. In the absence of extracellular Ca2+, theophylline significantly attenuated carbachol-induced transient increases in tension development, while it did not affect carbachol-induced transient increase in [Ca2+]i. The [Ca2+]i-force relationship, which was determined by cumulative applications of extracellular Ca2+ (0-5 mm) during 40 mm K+ depolarization, was significantly shifted to the right by theophylline. In alpha-toxin permeabilized strips, theophylline significantly increased the EC50 value of [Ca2+]i for contraction and enhanced the effect of cAMP, but not of cGMP. These results indicate that theophylline induces relaxation of the porcine tracheal smooth muscle through an activation of BK channels, and a resultant decrease in [Ca2+]i and an attenuation of Ca2+ sensitivity, presumably through the action of cAMP.