Abstract
Large-vessel BOLD contamination is a serious impediment to localization of neural activity in high-resolution fMRI studies. A new method is presented which estimates and removes the fraction of BOLD signal that arises from oriented vessels, such as cerebral and pial veins in a voxel, by measuring their influence on the phase angle of the complex valued fMRI time series. A maximum likelihood estimator based on a linear least-squares fit of the BOLD signal phase to the BOLD signal magnitude in a voxel is shown to efficiently suppress the BOLD effect from these larger veins, whose activation is not well colocalized with the neural response. In high-resolution in vivo fMRI data at 4 T, it is estimated that the method is sensitive to the phase changes in the cerebral, larger intracortical, and pial veins. The technique requires no special pulse sequence modifications or acquisition strategies, and is computationally fast and intrinsically robust. Magn Reson Med 47:1–9, 2002.