Abstract
Pilot symbol assisted modulation (PSAM) is a practical technique in mobile digital communications since it can provide high performance in fading with large constellations and it has a simple implementation. Maintaining high performance with PSAM requires an accurate estimate of the transmitted carrier frequency. This paper examines model-based frequency estimation for mobile digital communications with PSAM. Maximum-likelihood estimators (MLE), which include the model for the fading, are derived and compared with those in an additive white Gaussian noise (AWGN) channel, and performance hounds are computed. Reduced complexity frequency estimators based on the MLE are derived and the performance is quantified by Monte-Carlo simulation.

This publication has 15 references indexed in Scilit: