A Novel and Rapid Encoding Method Based on Mass Spectrometry for “One-Bead-One-Compound” Small Molecule Combinatorial Libraries
- 29 April 2003
- journal article
- research article
- Published by American Chemical Society (ACS) in Journal of the American Chemical Society
- Vol. 125 (20) , 6180-6188
- https://doi.org/10.1021/ja034539j
Abstract
A novel and efficient encoding method based on mass spectrometry for “one-bead-one-compound” small molecule combinatorial libraries has been developed. The topologically segregated bifunctional resin beads with orthogonal protecting groups in the outer and inner regions are first prepared according to our previously published procedure. Prior to library synthesis, the inner core of each bead is derivatized with 3−4 different coding blocks on a cleavable linker. Each functional group on the scaffold is encoded by an individual coding block containing a functional group with the same chemical reactivity. During the library synthesis, the same chemical reactions take place on the scaffold (outer layer of the bead) and coding blocks (inner core of the bead) concurrently. After screening, the coding tags in the positive beads are released, followed by molecular mass determination using matrix-assisted laser desorption ionization Fourier transform mass spectrometry. The chemical structure of library compounds can be readily identified according to the molecular masses of the coding tags. The feasibility and efficiency of this approach were demonstrated by the synthesis and screening of a model small molecule library containing 84 672 member compounds, with a model receptor, streptavidin. Streptavidin binding ligands with structural similarity (17) were identified. The decoding results were clear and unambiguous.Keywords
This publication has 32 references indexed in Scilit:
- High-Throughput One-Bead-One-Compound Approach to Peptide-Encoded Combinatorial Libraries: MALDI-MS Analysis of Single TentaGel BeadsJournal of Combinatorial Chemistry, 2003
- Preparation of ‘side‐chain‐to‐side‐chain’ cyclic peptides by Allyl and Alloc strategy: potential for library synthesisChemical Biology & Drug Design, 2001
- Solid-Phase Synthesis of 3,5-Disubstituted 2,3-Dihydro-1,5-benzothiazepin-4(5H)-onesThe Journal of Organic Chemistry, 1999
- Isotope or mass encoding of combinatorial librariesChemistry & Biology, 1996
- Direct characterization of solid phase resin-bound molecules by mass spectrometryBioorganic & Medicinal Chemistry Letters, 1996
- Solid Phase Synthesis of Aryl and Benzylpiperazines and their Application in Combinatorial ChemistryTetrahedron Letters, 1995
- Carbon-carbon bond formation in the dimerization of (octaethyloxophlorin radical)nickel(II)Journal of the American Chemical Society, 1993
- Generation and use of synthetic peptide combinatorial libraries for basic research and drug discoveryNature, 1991
- Solid phase peptide synthesis utilizing 9‐fluorenylmethoxycarbonyl amino acidsInternational Journal of Peptide and Protein Research, 1990
- Mass spectrometric determination of the amino acid sequence of peptides and proteinsMass Spectrometry Reviews, 1987