Effect of Velocity-Changing Collisions on the Output of a Gas Laser

Abstract
A theoretical model for the pressure dependence of the intensity of a gas laser is presented in which only velocity-changing collisions with foreign-gas atoms are included. This is a special case where the phase shifts are the same for the two atomic-laser levels or are so small that deflections are the dominant effect of collisions. A collision model for hard-sphere repulsive interactions is derived and the collision parameters, persistence of velocity and collision frequency, are assumed to be independent of velocity. The collision theory is applied to a third-order expansion of the polarization in powers of the cavity electric field (weak-signal theory). The resulting expression for the intensity shows strong pressure dependence. The collisions reduce the amount of saturation and the laser intensity increases with pressure in a characteristic fashion. It is recommended that the best way to look for this effect is to make the measurements under conditions of constant relative excitation.