Abstract
Muscarinic acetylcholine receptors (mAChRs) share with many other receptors of the guanine nucleotide-binding protein-coupled receptor family a highly conserved cysteine residue in the putative cytoplasmic carboxyl-terminal region of the protein. Because elimination of this cysteine in the beta 2-adrenergic receptor has been reported to decrease functional responsiveness, we determined if this cysteine residue is essential for mAChR-effector coupling by replacing Cys457 of the m2 mAChR with glycine and expressing wild-type and mutant receptor in Chinese hamster ovary (CHO) cells. The mutant and wild-type receptors exhibited similar affinities for binding of muscarinic ligands. In addition, the mutation did not affect cell surface localization or receptor-mediated inhibition of adenylate cyclase. These results indicate that the cysteine residue in the carboxyl-terminal domain of the m2 mAChR is not required for ligand binding or mAChR-mediated inhibition of adenylate cyclase in CHO cells.