An efficient local approach for the path generation of robot manipulators

Abstract
In this article an efficient local approach for the path generation of robot manipulators is presented. The approach is based on formulating a simple nonlinear programming problem. This problem is considered as a minimization of energy with given robot kinematics and subject to the robot requirements and a singularities avoidance constraint. From this formulation a closed form solution is derived which has the properties that allows to pursue both singularities and obstacle avoidance simultaneously; and that it can incorporate global information. These properties enable the accomplishment of the important task that while a specified trajectory in the operational space can be closely followed, also a desired joint configuration can be attained accurately at a given time. Although the proposed approach is primarily developed for redundant manipulators, its application to nonredundant manipulators is examplified by considering a particular commercial manipulator.

This publication has 17 references indexed in Scilit: