Current Amplification in a Relativistic Electron Beam

Abstract
Measurements of the current transported when an intense, relativistic electron beam penetrates a low-pressure gas show that the net current exceeds the primary beam current. As the pressure is increased, a gradual transition to conditions of magnetic neutralization is observed. Computations of the trajectories of secondary electrons in partially neutralized, uniform beams suggest that secondary electron drift may be responsible for the current amplification.

This publication has 7 references indexed in Scilit: