A direct comparison of protein interaction confidence assignment schemes
Open Access
- 26 July 2006
- journal article
- research article
- Published by Springer Nature in BMC Bioinformatics
- Vol. 7 (1) , 360
- https://doi.org/10.1186/1471-2105-7-360
Abstract
Background: Recent technological advances have enabled high-throughput measurements of protein-protein interactions in the cell, producing large protein interaction networks for various species at an ever-growing pace. However, common technologies like yeast two-hybrid may experience high rates of false positive detection. To combat false positive discoveries, a number of different methods have been recently developed that associate confidence scores with protein interactions. Here, we perform a rigorous comparative analysis and performance assessment among these different methods. Results: We measure the extent to which each set of confidence scores correlates with similarity of the interacting proteins in terms of function, expression, pattern of sequence conservation, and homology to interacting proteins in other species. We also employ a new metric, the Signal-to-Noise Ratio of protein complexes embedded in each network, to assess the power of the different methods. Seven confidence assignment schemes, including those of Bader et al., Deane et al., Deng et al., Sharan et al., and Qi et al., are compared in this work. Conclusion: Although the performance of each assignment scheme varies depending on the particular metric used for assessment, we observe that Deng et al. yields the best performance overall (in three out of four viable measures). Importantly, we also find that utilizing any of the probability assignment schemes is always more beneficial than assuming all observed interactions to be true or equally likely.Keywords
This publication has 36 references indexed in Scilit:
- The Plasmodium protein network diverges from those of other eukaryotesNature, 2005
- Towards a proteome-scale map of the human protein–protein interaction networkNature, 2005
- Conserved patterns of protein interaction in multiple speciesProceedings of the National Academy of Sciences, 2005
- Protein complexes and functional modules in molecular networksProceedings of the National Academy of Sciences, 2003
- Conserved pathways within bacteria and yeast as revealed by global protein network alignmentProceedings of the National Academy of Sciences, 2003
- Comparative assessment of large-scale data sets of protein–protein interactionsNature, 2002
- Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometryNature, 2002
- Functional organization of the yeast proteome by systematic analysis of protein complexesNature, 2002
- A comprehensive two-hybrid analysis to explore the yeast protein interactomeProceedings of the National Academy of Sciences, 2001
- A novel genetic system to detect protein–protein interactionsNature, 1989