Abstract
It has been predicted by Shelton and Shen [Phys. Rev. A 5, 1867 (1972)] and observed by Kajikawa et al. [Jpn. J. Appl. Phys. Lett. 31, L679 (1992)] and Yamada et al. [Appl. Phys. B 60, 485 (1995)] that the efficiency of nonlinear-optical frequency conversion increases significantly in a nonlinear periodic medium and, accordingly, the intensity of the generated harmonic increases as the fourth power of the sample thickness, as opposed to the square law observed in homogeneous media. In this paper it is shown that the same enhancement of the efficiency of nonlinear-optical frequency conversion in a nonlinear periodic medium can be achieved using an ordinary pump wave in the form of a plane wave when both the pump wave and the harmonics are diffracted by the periodic structure of the nonlinear medium. The phenomenon is analyzed quantitatively in the example of second-harmonic generation.