Overcoming Scale Usage Heterogeneity

Abstract
Questions that use a discrete ratings scale are commonplace in survey research. Examples in marketing include customer satisfaction measurement and purchase intention. Survey research practitioners have long commented that respondents vary in their usage of the scale: Common patterns include using only the middle of the scale or using the upper or lower end. These differences in scale usage can impart biases to correlation and regression analyses. To capture scale usage differences, we developed a new model with individual scale and location effects and a discrete outcome variable. We model the joint distribution of all ratings scale responses rather than specific univariate conditional distributions as in the ordinal probit model. We apply our model to a customer satisfaction survey and show that the correlation inferences are much different once proper adjustments are made for the discreteness of the data and scale usage. We also show that our adjusted or latent ratings scale is more closely related to ...