Monitoring of chemical reactions within microreactors using an inverted Raman microscopic spectrometer
- 24 September 2003
- journal article
- research article
- Published by Wiley in Electrophoresis
- Vol. 24 (18) , 3239-3245
- https://doi.org/10.1002/elps.200305532
Abstract
An inverted Raman microscope spectrometer has been used to profile the spatial evolution of reactant and product concentrations for a chemical reaction within a microreactor operating under hydrodynamic flow control. The Raman spectrometer was equipped with a laser source at wavelength of 780 nm, confocal optics, a holographic transmission grating, and a charge-coupled device (CCD) detector. The microreactor consisted of a T-shaped channel network etched within a 0.5 mm thick glass bottom plate that was thermally bonded to a 0.5 mm thick glass top plate. The ends of the channel network were connected to reagent reservoirs that were linked to a syringe pump for driving the solutions by hydrodynamic pumping within the channels. The microchannels were 221 μm wide and 73 μm deep. The synthesis of ethyl acetate from ethanol and acetic acid was investigated as a model system within the microreactor as Raman scattering bands for each reactant and product species were clearly resolved. Raman spectral intensities of each band were proportional to concentration for each species and hence all concentrations could be quantitatively measured after calibration. By scanning specific Raman bands within a selected area in the microchannel network at given steps in the X-Y plane, spatially resolved concentration profiles were obtained under steady-state flow conditions. Under the flow conditions used, different positions within the concentration profile correspond to different times after contact and mixing of the reagents, thereby enabling one to observe the time dependence of the product formation. Raman microscopy provides a useful complementary technique to UV/VIS absorbance and fluorescence methods for the in situ monitoring and analysis of chemical reaction species having their lowest S0-S1 absorption bands too far in the UV to be of use, due to their probable overlap with the bands from other reactant, product and solvent molecules.Keywords
This publication has 14 references indexed in Scilit:
- Micro reactors: principles and applications in organic synthesisTetrahedron, 2002
- Micro Total Analysis Systems. 1. Introduction, Theory, and TechnologyAnalytical Chemistry, 2002
- Electrical currents and liquid flow rates in micro-reactorsLab on a Chip, 2001
- Rapid prototyping of glass and PDMS microstructures for micro total analytical systems and micro chemical reactors by microfabrication in the general laboratoryAnalytica Chimica Acta, 2001
- Microreaction engineering — is small better?Chemical Engineering Science, 2001
- Quantitative 3-dimensional profiling of channel networks within transparent ‘lab-on-a-chip’ microreactors using a digital imaging methodLab on a Chip, 2001
- Raman Spectroscopy and Atomic Force Microscopy of the Reaction of Sulfuric Acid with Sodium ChlorideJournal of the American Chemical Society, 2000
- In situ Raman spectroscopy — a valuable tool to understand operating catalystsJournal of Molecular Catalysis A: Chemical, 2000
- Reaction monitoring using Raman spectroscopy and chemometricsChemometrics and Intelligent Laboratory Systems, 1999
- Micromachining of monocrystalline silicon and glass for chemical analysis systems A look into next century's technology or just a fashionable craze?TrAC Trends in Analytical Chemistry, 1991