A combinatorial approach to nonlinear functional expansions: an introduction with an example
- 6 January 2003
- conference paper
- Published by Institute of Electrical and Electronics Engineers (IEEE)
Abstract
No abstract availableThis publication has 14 references indexed in Scilit:
- Combinatorial resolution of systems of differential equations. IV. separation of variablesDiscrete Mathematics, 1988
- Combinatorial resolution of systems of differential equations, I. Ordinary differential equationsPublished by Springer Nature ,1986
- Application of a new functional expansion to the cubic anharmonic oscillatorJournal of Mathematical Physics, 1982
- Algebraic computation of the solution of some nonlinear differential equationsLecture Notes in Computer Science, 1982
- Une nouvelle démonstration combinatoire des formules d'inversion de LagrangeAdvances in Mathematics, 1981
- Une théorie combinatoire des séries formellesAdvances in Mathematics, 1981
- Fonctionnelles causales non linéaires et indéterminées non commutativesBulletin de la Société Mathématiques de France, 1981
- Frequency domain analysis of nonlinear systems: general theoryIEE Journal on Electronic Circuits and Systems, 1979
- Frequency-domain analysis of nonlinear systems: formulation of transfer functionsIEE Journal on Electronic Circuits and Systems, 1979
- Iterated path integralsBulletin of the American Mathematical Society, 1977