Repertaxin, a novel inhibitor of rat CXCR2 function, inhibits inflammatory responses that follow intestinal ischaemia and reperfusion injury
- 1 September 2004
- journal article
- Published by Wiley in British Journal of Pharmacology
- Vol. 143 (1) , 132-142
- https://doi.org/10.1038/sj.bjp.0705862
Abstract
1. Neutrophils are thought to play a major role in the mediation of reperfusion injury. CXC chemokines are known inducers of neutrophil recruitment. Here, we assessed the effects of Repertaxin, a novel low molecular weight inhibitor of human CXCL8 receptor activation, on the local, remote and systemic injuries following intestinal ischaemia and reperfusion (I/R) in the rat. 2. Pre-incubation of rat neutrophils with Repertaxin (10(-11)-10(-6) m) inhibited the chemotaxis of neutrophils induced by human CXCL8 or rat CINC-1, but not that induced by fMLP, PAF or LTB(4), in a concentration-dependent manner. Repertaxin also prevented CXCL8-induced calcium influx but not CXCL8 binding to purified rat neutrophils. 2. In a model of mild I/R injury (30 min of ischaemia and 30 min of reperfusion), Repertaxin dose-dependently (3-30 mg kg(-1)) inhibited the increase in vascular permeability and neutrophil influx. Maximal inhibition occurred at 30 mg kg(-1). 4. Following severe I/R injury (120 min of ischaemia and 120 min of reperfusion), Repertaxin (30 mg kg(-1)) markedly prevented neutrophil influx, the increase in vascular permeability both in the intestine and the lungs. Moreover, there was prevention of haemorrhage in the intestine of reperfused animals. 5. Repertaxin effectively suppressed the increase in tissue (intestine and lungs) and serum concentrations of TNF-alpha and the reperfusion-associated lethality. 6. For comparison, we also evaluated the effects of an anti-CINC-1 antibody in the model of severe I/R injury. Overall, the antibody effectively prevented tissue injury, systemic inflammation and lethality. However, the effects of the antibody were in general of lower magnitude than those of Repertaxin. 7. In conclusion, CINC-1 and possibly other CXC chemokines, acting on CXCR2, have an important role during I/R injury. Thus, drugs, such as Repertaxin, developed to block the function of the CXCR2 receptor may be effective at preventing reperfusion injury in relevant clinical situations.Keywords
This publication has 53 references indexed in Scilit:
- Neutrophil migration induced by IL-8-activated mast cells is mediated by CINC-1Cytokine, 2003
- Protective Effects of Anti-Neutrophil Antibody against Myocardial Ischemia/Reperfusion Injury in RatsEuropean Surgical Research, 2002
- Role of tachykinin NK receptors on the local and remote injuries following ischaemia and reperfusion of the superior mesenteric artery in the ratBritish Journal of Pharmacology, 2002
- Effects of inhibition of PDE4 and TNF‐α on local and remote injuries following ischaemia and reperfusion injuryBritish Journal of Pharmacology, 2001
- Effects of the PAF receptor antagonist UK74505 on local and remote reperfusion injuries following ischaemia of the superior mesenteric artery in the ratBritish Journal of Pharmacology, 2000
- RAT INTERLEUKIN 6: EXPRESSION IN RECOMBINANTESCHERICHIA COLI, PURIFICATION AND DEVELOPMENT OF A NOVEL ELISACytokine, 1999
- Inhibition Of Interleukin-8 Blocks Myocardial Ischemia-Reperfusion InjuryThe Journal of Thoracic and Cardiovascular Surgery, 1998
- Renal ischaemia-reperfusion injuryBritish Journal of Surgery, 1996
- Renal ischaemia-reperfusion injuryBritish Journal of Surgery, 1996
- Interleukin-8 and the chemokine familyInternational Journal of Immunopharmacology, 1995