Abstract
An algorithm to generate discrete beam-intensity modulation by dynamic multileaf collimation is presented which incorporates constraints on minimum allowed leaf separations. MLC positioning information is derived simultaneously for all leaf pairs and back-up diaphragms as they progress across the field. A feedback mechanism allows corrections to be applied to eliminate potential violations of minimum separation conditions and any underexposure in the interleaf tongue-and-groove region as they are encountered. The resulting motion correctly delivers the intended modulation and is physically realizable. Implementation of the algorithm is described. Results of the algorithm can also alternatively be interpreted as defining a series of static fields to deliver the same modulation.

This publication has 16 references indexed in Scilit: