Angle-resolved Auger study of 10-keVAr+-ion-induced SiLMMatomic lines

Abstract
We present a detailed, angle-resolved Si L-shell Auger study by bombarding a single-crystalline Si sample with 10-keV Ar+ ions. We have observed a new atomic line at kinetic energy of ∼99 eV which is tentatively assigned to an Auger transition involving two 2p holes in Si+. The existence of two atomic peaks at 61.36 and 91.1 eV has also been clearly confirmed. Our Auger spectra show well-split Doppler peaks for the principal Si0 and Si+ atomic lines and a strong dependence of the shift amplitude on both incidence and detection angles. Successful computer fitting of the angular dependence of Doppler shift has been achieved by using a simple binary-collision model with the Molière approximation to the Thomas-Fermi screening potential. These results suggest that the first violent Ar-Si asymmetric collisions contribute remarkably to the Si 2p-vacancy creation process and are responsible for the ejection of energetic Si(*) particles which is highly directional. The critical minimum Ar-Si approach distance for Si 2p-hole excitation is 0.355 Å, in very good agreement with the value predicted by molecular-orbital theory.