Nucleus-mediated spin-flip transitions in GaAs quantum dots

Abstract
Spin-flip rates in GaAs quantum dots can be quite slow, thus opening up the possibilities to manipulate spin states in the dots. We present here estimations of inelastic spin-flip rates mediated by hyperfine interaction with nuclei. Under general assumptions the nucleus-mediated rate is proportional to the phonon relaxation rate for the corresponding non-spin-flip transitions. The rate can be accelerated in the vicinity of a singlet-triplet excited state crossing. The small proportionality coefficient depends inversely on the number of nuclei in the quantum dot. We compare our results with known mechanisms of spin-flip in GaAs quantum dots.
All Related Versions