Rates of thermal relaxation in direct simulation Monte Carlo methods

Abstract
For internal energy relaxation in rarefied gas mixtures, exact relationships are derived between the selection probability P employed in direct simulation Monte Carlo (DSMC) methods and the macroscopic relaxation rates dictated by collision number Z in Jeans’ equation. These expressions apply to the Borgnakke–Larsen model for internal energy exchange mechanics and are not limited to the assumption of constant Z. Although Jeans’ equation leads to adiabatic relaxation curves, which coalesce to a single solution when plotted against the cumulative number of collisions, it is shown that the Borgnakke–Larsen selection probabilities depend upon the intermolecular potential, the number of internal degrees of freedom, and the DSMC selection methodology. Furthermore, simulation results show that the common assumption P=1/Z is invalid, in general, and leads to considerably slower relaxation than stipulated by Z in Jeans’ equation. Moreover, inconsistent definitions of collision rates appearing in the literature can lead to considerable errors in DSMC models. Finally, for general gas mixtures, Borgnakke–Larsen DSMC kinetics match Jeans’ behavior exactly only when using a selection methodology, which prohibits multiple relaxation events during a single collision.