Sequence of centromere separation: generation of unstable multicentric chromosmes in a rat cell line

Abstract
A transformed cell line, B1, of cerebral endothelial origin from the Wistar-Kyoto male rat has chromatid and chromosome type bridges in virtually every cell. It exhibits various dicentric and polycentric chromosomes. Most dicentrics are symmetric isochromosomes. Certain isodicentrics are present in a fair segment of the cell population; however, almost all cells have some newly arising isodicentrics. The live cells show a lengthened prometaphase. Anaphase is also retarded possibly due to the occurrence of bridges. At anaphase some multicentrics split at only one centromere. When pulled to the two poles the unsplit centromeres and the distal chromosome segment form a side arm bridge. Another mechanism appears to be a total lack of separation of daughter centromeres at meta-anaphase (‘meiotic-like’ behavior of mitotic chromosomes). This is realized by the pulling of each of the two unsplit centromeres to opposite poles and results in bridges with both sister chromatids running parallel to each other. A break at corresponding weak points in the two sister chromatids followed by rejoining can form a dicentric isochromosome. A third mechanism, the breakage-fusion-bridge cycle, is also operative but would not produce isodicentrics. In the case of the first two mechanisms some or all centromeres apparently split between telophase and onset of the following DNA synthesis rather than at the usual time at late metaphase. These observations may suggest some previously unknown behavior of multicentric chromosomes during mitosis.