A Multiresolution Enhancement to Generic Classifiers of Subcellular Protein Location Images
- 25 May 2006
- conference paper
- Published by Institute of Electrical and Electronics Engineers (IEEE)
Abstract
We propose an algorithm for the classification of fluorescence microscopy images depicting the spatial distribution of proteins within the cell. The problem is at the forefront of the current trend in biology towards understanding the role and function of all proteins. The importance of protein subcellular location was pointed out by Murphy, whose group produced the first automated system for classification of images depicting these locations, based on diverse feature sets and combinations of classifiers. With the addition of the simplest multiresolution features, the same group obtained the highest reported accuracy of 91.5% for the denoised 2D HeLa data set. Here, we aim to improve upon that system by adding the true power of multiresolution adaptivity. In the process, we build a system able to work with any feature sets and any classifiers, which we denote as a generic classification system (GCS). Our system consists of multiresolution (MR) decomposition in the front, followed by feature computation and classification in each subband, yielding local decisions. This is followed by the crucial step of combining all those local decisions into a global one, while at the same time ensuring that the resulting system does no worse than a no-decomposition one. On a nondenoised data set and a much smaller number of features (a combination of texture and Zernicke moment features) and a neural network classifier, we obtain a high accuracy of 89.8%, effectively proving that the space-frequency localized information in the subbands adds to the discriminative power of the systemKeywords
This publication has 5 references indexed in Scilit:
- Location proteomics: a systems approach to subcellular locationBiochemical Society Transactions, 2005
- From quantitative microscopy to automated image understandingJournal of Biomedical Optics, 2004
- Mining knowledge for HEp-2 cell image classificationArtificial Intelligence in Medicine, 2002
- Automated Recognition of Intracellular Organelles in Confocal Microscope ImagesTraffic, 2002
- Wavelets for a visionProceedings of the IEEE, 1996