Flow-injection analysis and real-time detection of RNA bases by surface-enhanced Raman spectroscopy

Abstract
Surface-enhanced Raman scattering (SERS) spectroscopy has been successfully interfaced with a flow injection analysis system to detect RNA bases in real time. Four of the major base components of RNA, uracil, cytosine, adenine, and guanine, were introduced into the flow injection system and were mixed with a Ag sol prior to SERS measurements. Several experimental parameters including pH, temperature, flow rate, and tubing materials were examined, and their impact on the SERS spectra is presented here. The feasibility of interfacing flow injection based SERS detection methods with liquid or high-performance liquid chromatography for the detection of individual components in a complex mixture is also assessed.