Existence theorems for trapped modes

Abstract
A two-dimensional acoustic waveguide of infinite extent described by two parallel lines contains an obstruction of fairly general shape which is symmetric about the centreline of the waveguide. It is proved that there exists at least one mode of oscillation, antisymmetric about the centreline, that corresponds to a local oscillation at a particular frequency, in the absence of excitation, which decays with distance down the waveguide away from the obstruction. Mathematically, this trapped mode is related to an eigenvalue of the Laplace operator in the waveguide. The proof makes use of an extension of the idea of the Rayleight quotient to characterize the lowest eigenvalue of a differential operator on an infinite domain.