Acoustic radiation force on micrometer-size particles

Abstract
The acoustic radiation force on micrometer-sized polystyrene spheres was measured through observation of the sphere movement in a 500 kHz ultrasonic standing wave. The known spatial distribution of the force allowed verification of the correlation between the sphere velocity and the force. It was found that the linear dependency of the force on the cube of the sphere radius, as predicted by Yosioka, began to fail when the sphere radius was below 5 μm. This can be accounted for by the presence of a shell layer surrounding the sphere, which increased the effective radius of the sphere. This may point to applications of the acoustic radiation force in the handling of moicrospheres smaller than hitherto thought possible.

This publication has 6 references indexed in Scilit: