Insulin-like growth factors stimulate synthesis of nucleic acids and glycogen in cultured calvaria cells

Abstract
A (sub)population of cells obtained from newborn rat calvaria by (sequential) collagenase digestion is grown to confluence in serum-containing medium. These cells are osteoblast-like with respect to high alkaline phosphatase activity and marked responsiveness (cAMP) to parathormone. Insulin-like growth factors (IGFs) enhance net incorporation of the labeled precursors thymidine, uridine, and glucose into the respective macromolecules DNA, RNA, and glycogen. Human IGF I is five times as potent as IGF II in evoking these anabolic responses in cultured rat calvaria cells. In contrast to insulin, the factors are effective in concentrations in which they are present in serum.