Effect of a neutron-star crust on the r-mode instability
- 26 September 2000
- journal article
- research article
- Published by American Physical Society (APS) in Physical Review D
- Vol. 62 (8) , 084030
- https://doi.org/10.1103/physrevd.62.084030
Abstract
The presence of a viscous boundary layer under the solid crust of a neutron star dramatically increases the viscous damping rate of the fluid r-modes. We improve previous estimates of this damping rate by including the effect of the Coriolis force on the boundary-layer eigenfunction and by using more realistic neutron-star models. If the crust is assumed to be perfectly rigid, the gravitational radiation driven instability in the r-modes is completely suppressed in neutron stars colder than about K. Energy generation in the boundary layer will heat the star, and will even melt the crust if the amplitude of the r-mode is large enough. We solve the heat equation explicitly (including the effects of thermal conduction and neutrino emission) and find that the r-mode amplitude needed to melt the crust is for maximally rotating neutron stars. If the r- mode saturates at an amplitude larger than the heat generated is sufficient to maintain the outer layers of the star in a mixed fluid-solid state analogous to the pack ice on the fringes of the Arctic Ocean. We argue that in young, rapidly rotating neutron stars this effect considerably delays the formation of the crust. By considering the dissipation in the ice flow, we show that the final spin frequency of stars with r-mode amplitude of order unity is close to the value estimated for fluid stars without a crust.
Keywords
All Related Versions
This publication has 18 references indexed in Scilit:
- [CLC][ITAL]r[/ITAL][/CLC]-Mode Runaway and Rapidly Rotating Neutron StarsThe Astrophysical Journal, 2000
- Viscous Boundary-Layer Damping of [CLC][ITAL]r[/ITAL][/CLC]-Modes in Neutron StarsThe Astrophysical Journal, 2000
- Gravitational-Wave Driven Instability of Rotating Relativistic StarsProgress of Theoretical Physics Supplement, 1999
- Gravitational waves from hot young rapidly rotating neutron starsPhysical Review D, 1998
- Gravitational Radiation Instability in Hot Young Neutron StarsPhysical Review Letters, 1998
- Spontaneous Symmetry Breaking of Rapidly Rotating Stars in General RelativityThe Astrophysical Journal, 1996
- The effect of viscosity on neutron star oscillationsThe Astrophysical Journal, 1987
- A granular flow model for dense planetary ringsIcarus, 1985
- Grain flow as a fluid-mechanical phenomenonJournal of Fluid Mechanics, 1983
- Transport properties of dense matter. IIThe Astrophysical Journal, 1979