Vertical and adiabatic electronic excitations in biphenylene: A theoretical study

Abstract
The low-lying singlet states of biphenylene have been studied using ab initio methods. Vertical excitation energies were calculated by multiconfigurational perturbation theory (CASPT2), starting from a complete active space self-consistent field (CASSCF) reference. The geometries of the most important low-lying excited states were individually optimized at the CASSCF level to study the difference between vertical and adiabatic excitations. Extended atomic natural orbital (ANO)-type basis sets were used to calculate state energies. Geometry optimizations were done with smaller ANO-type basis sets. Excitations from the ground state to the 1 1B3g and 1 1B2u excited singlet states lead to pronounced geometry changes which alter the bond alternation pattern. The theoretical results provide a solid basis for the assignment and interpretation of experimental spectra.

This publication has 44 references indexed in Scilit: