Abstract
Parity non-conservation in nuclei is viewed as an inescapable consequence of weak interactions. This review, starts with the derivation of the effective weak Hamiltonian, which then acts as a perturbation mixing states of the opposite parity in nuclei. The connection between the effective weak Hamiltonian and various models of weak interactions (or quantum flavour dynamics, QFD) and the strong quantum chromodynamics (QCD) is briefly reviewed. The effective weak Hamiltonian serves as an input for determining the weak parity-violating potential. This weak potential is the main tool for connecting elementary particles with nuclear physics. Its derivation is discussed extensively, with special attention to one-boson-exchange (rho meson, pion, etc) contributions. Examples of theoretical and semi-empirical weak parity-violating potentials are given. Nuclear physics aspects of parity non-conservation in nuclei are also discussed.