Parasite-Dependent Expansion of TNF Receptor II–Positive Regulatory T Cells with Enhanced Suppressive Activity in Adults with Severe Malaria

Abstract
Severe Plasmodium falciparum malaria is a major cause of global mortality, yet the immunological factors underlying progression to severe disease remain unclear. CD4+CD25+ regulatory T cells (Treg cells) are associated with impaired T cell control of Plasmodium spp infection. We investigated the relationship between Treg cells, parasite biomass, and P. falciparum malaria disease severity in adults living in a malaria-endemic region of Indonesia. CD4+CD25+Foxp3+CD127lo Treg cells were significantly elevated in patients with uncomplicated (UM; n = 17) and severe malaria (SM; n = 16) relative to exposed asymptomatic controls (AC; n = 10). In patients with SM, Treg cell frequency correlated positively with parasitemia (r = 0.79, p = 0.0003) and total parasite biomass (r = 0.87, p+ Treg cells with high expression of Foxp3 was increased in severe relative to uncomplicated malaria. In vitro, P. falciparum–infected red blood cells dose dependently induced TNFRII+Foxp3hi Treg cells in PBMC from malaria-unexposed donors which showed greater suppressive activity than TNFRII Treg cells. The selective enrichment of the Treg cell compartment for a maximally suppressive TNFRII+Foxp3hi Treg subset in severe malaria provides a potential link between immune suppression, increased parasite biomass, and malaria disease severity. The findings caution against the induction of TNFRII+Foxp3hi Treg cells when developing effective malaria vaccines. Malaria is a major global health problem responsible for more than 1 million deaths annually. Severity of malaria disease is associated with the inability of host immune cells to efficiently eliminate malaria parasites from the blood. Little is known about immune regulatory factors controlling the onset of severe and potentially fatal malaria. Regulatory T (Treg) cells are a small specialized subset of immune cells that suppress the activation and expansion of effector immune cells which partake in parasite elimination. We investigated the relationship between Treg cells, parasite burden, and disease severity in adult malaria patients with either uncomplicated or severe malaria. We demonstrated that Treg cell frequency was elevated in malaria patients and associated with high parasite burden in severe malaria but not in uncomplicated malaria. Comparison of Treg cell characteristics allowed us to identify a new highly suppressive subset of Treg cells that was elevated in severe malaria patients. Our results indicate that severe malaria is accompanied by the induction of highly suppressive Treg cells that can promote parasite growth and caution against the induction of these Treg cells when developing effective malaria vaccines.

This publication has 45 references indexed in Scilit: