Enhanced Hematopoietic Activity Accompanies Parasite Expansion in the Spleen and Bone Marrow of Mice Infected withLeishmania donovani

Abstract
In this study, we have analyzed hematopoietic activity in the spleen, bone marrow, and blood of BALB/c and scid mice infected with Leishmania donovani. Our analysis demonstrates that infection induces a rapid but transient mobilization of progenitor cells into the circulation, associated with elevated levels of granulocyte/macrophage colony-stimulating factor (GM-CSF) and MIP-1α. From 14 to 28 days postinfection, when parasite expansion begins in the spleen and bone marrow, both the frequency and cell cycle activity of hematopoietic progenitors, particulary CFU-granulocyte, monocyte, are dramatically increased in these organs. This is associated with increased accumulation of mRNA for GM-CSF, M-CSF, and G-CSF, but not interleukin-3. Our data also illustrate that hematopoietic activity, as assessed by changes in the frequency of progenitor cell populations and their levels of cell cycle activity, can be regulated in both a T-cell-independent and T-cell-dependent, as well as in an organ-specific, manner. Collectively, these data add to our knowledge of the long-term changes which occur in organs in whichL. donovani is able to persist.